HAYNES[®] 230[®] alloy

Principal Features

Excellent High-Temperature Strength, Thermal Stability, and Environment Resistance

HAYNES[®] 230[®] (UNS N06230) alloy is a nickel-chromium-tungsten-molybdenum alloy that combines excellent high-temperature strength, outstanding resistance to oxidizing environments up to 2100°F (1149°C) for prolonged exposures, premier resistance to nitriding environments, and excellent long-term thermal stability. It is readily fabricated and formed, and is castable. Other attractive features include lower thermal expansion characteristics than most high-temperature alloys, and a pronounced resistance to grain coarsening with prolonged exposure to high temperatures.

Easily Fabricated

HAYNES[®] 230[®] alloy has excellent forming and welding characteristics. It may be forged or otherwise hot-worked, providing it is held at 2150°F (1177°C) for a time sufficient to bring the entire piece to temperature. As a consequence of its good ductility, 230[®] alloy is also readily formed by coldworking. All hot- or coldworked parts should be annealed and rapidly cooled in order to restore the best balance of properties. The alloy can be welded by a variety of techniques, including gas tungsten arc (GTAW), gas metal arc (GMAW), and resistance welding.

Heat-Treatment

Wrought 230[®] alloy is furnished in the solution heat-treated condition, unless otherwise specified. The alloy is solution heat-treated in the range of 2150 to 2275°F (1177 to 1246°C) and rapidly cooled or water-quenched for optimum properties.

Annealing at temperatures lower than the solution heat-treating temperatures will produce some carbide precipitation in 230[®] alloy, which may marginally affect the alloy's strength and ductility.

Castings

HAYNES[®] 230[®] alloy may be cast using traditional air-melt sand mold or vacuum-melt investment casting foundry practices. Silicon levels at the high end of the specification range are recommended for enhanced fluidity. Castings may be used in either the as-cast or solution-heat-treated condition depending upon property requirements.

Principal Features Continued

Applications

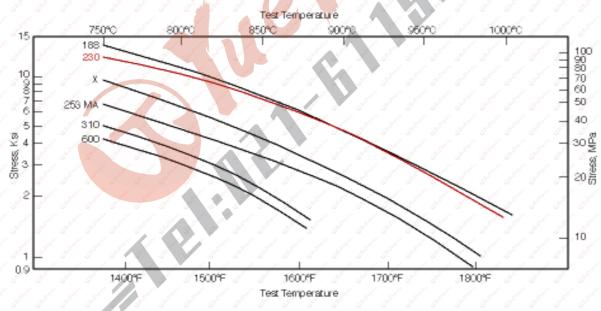
HAYNES[®] 230[®] alloy combines properties which make it ideally suited for a wide variety of component applications in the aerospace and power industries. It is used for combustion cans, transition ducts, flame holders, thermocouple sheaths, and other important gas turbine components. In the chemical process industry, 230[®] alloy is used for catalyst grid supports in ammonia burners, high-strength thermocouple protection tubes, high-temperature heat exchangers, ducts, high-temperature bellows, and various other key process internals.

In the industrial heating industry, applications for 230[®] alloy include furnace retorts, chains and fixtures, burner flame shrouds, recuperator internals, dampers, nitriding furnace internals, heat-treating baskets, grates, trays, sparger tubes, thermocouple protection tubes, cyclone internals, and many more.

	jht % 🖌 🖌 🖉
Nickel:	57 Balance
Chromium:	22
Tungsten:	14
Molybdenum:	2
Iron:	3 max.
Cobalt:	5 max.
Manganese:	0.5
Silicon:	0.4
Niobium:	0.5 max.
Aluminum:	0.3
Titanium:	0.1 max.
Carbon:	0.1
Lanthanum:	0.02
Boron:	0.015 max.

Nominal Composition

Creep and Rupture Properties


HAYNES[®] 230[®] alloy is a solid-solution-strengthened material which combines excellent high-temperature strength with good fabricability at room temperature. It is particularly effective for very long-term applications at temperatures of 1200°F (650°C) or more, and is capable of outlasting stainless steels and nickel alloys by as much as 100 to 1 depending upon the temperature. Alternatively, the higher strength of 230[®] alloy allows for the use of design section thicknesses as much as 75 percent thinner than lesser alloys with no loss in load-bearing capability.

Stress-Rupture Lives for Various Alloys at Fixed Test Conditions (Bar and Plate)*

	A Share share share share share share share share	Hours to Rupture	
Alloy	1400°F (760°C)	1600°F (871°C)	1800°F (982°C)
State State State - St	15.0 ksi (103 MPa)	4.1 ksi (31 Mpa)	2.0 ksi (14 Mpa)
230 ®	8,200	65,000	5,000
625	19,000	14,000	2,400
X / X	900	5,000	2,100
800H	130	1,200	920
INCONEL [®] 601	50	1,200	1,000
253 MA®	140	900	720
600	15	280	580
316 SS	100	240	130
RA330®	30	230	130
304 SS	10 J J J J J	100	72 / 72

*Based upon Larson-Miller extrapolation

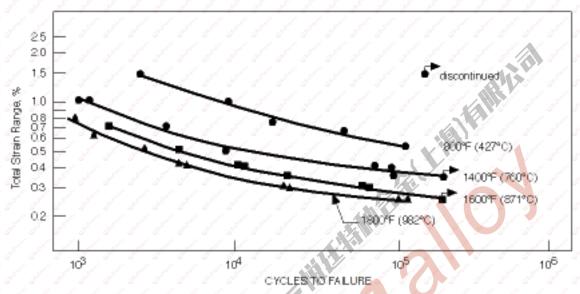
Comparison of Stress to Produce 1% Creep in 1000 Hours (Sheet)

Creep and Rupture Properties Continued 230[®] Sheet, Solution Annealed

a francis	Staff Staff	Contraction of Contraction	Appr	oximate	Initial S	Stress to	o Produc	e Spec	ified Cre	ep in
Temperature		Creep	10 Hours		100 F	lours	1,000	Hours	10,000	Hours
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
String String	3 - 3 - 3 	0.5	and and a state	3 <u>5</u> 3	31	214	and the second sec	and and a start and	Star Star St	and and and
1200	649	, ³⁷ , 1 ³⁷ , ³	and and and	State State Sta	35	241	24*	165*	State State St	and State State
States States	Staff" Staff" St	R	Ster - Ster	Star Star Sta	51	352	36	248	28	193
State State	Strating States St	0.5	29	200	21	145	14.5	100	- 3 ¹¹ - <mark>3</mark> 11 - 31	Stati _ Stat
1300	704	Jan 13 J	33	228	23	159	17	114	State _state St	Stat - Stat
Station Station	Station Station St	R	47	324	34	234	26	179	20 0	134
Station Station	Stuffen Stuffen St	0.5	19.2	/ 132 /	13.7	94	9.6	66	7.3	50
1400	760	ter state 1 states of	21	145	15.5	107	11.5	79	8.6	59
Station Stationer	Statute Statute St	/ R/ 5	32	221	24.5	169	18.2	125	13.2*	91*
1500 816	States States St	0.5	14.2	98	10.3	71	7.5	52	5.4*	37*
	816	·	15	103	11.2	77	8.6	59	6.5*	45*
	R	23*	161*	17.5	121	12.5	86	8.4*	58*	
and the and the second second second	the second statement of	0.5	11.3	78	8.1	56	5.7	39	4.0	28
1600	871	rate start start	11.7	81	9.0	62	6.2	43	4.3	30
G. G.	C C C C	R	17.0	117	12.5	86	8.2	57	5.6*	39*
Straff Starf	Strand Strand	0.5	7.7	53	5.5	38	3.8	26	2.4*	17*
1700	927	<u>/ 1 / </u>	8.8*	61*	6.2	43	4.2	29	2.7*	19*
Ster Ster	Ster Ster St	R	12.0*	83*	8.0	55	5.1	35	3.2	22
String String	Str. Str. St.	0.5	5.8	40	3.5	24	1.7	12	0.85	5.9
1800	982	, [«] , 1 [«] , [«]	6.1*	42*	3.9	27	1.9	13	1.0	6.9
State State	State State St	R	8.0*	55*	5.4	37	2.6	18	1.2*	8.3*
Stell Stell	Stall Stall St	0.5			1.7	12	0.8	5.5	State State St	Stell_ Stell
1900	1038		Str - Str	Star and Star	2.0	14	0.9	6.2	Steam Steam St	State - Stat
Staffer Staffer	Station Station	R	<u> </u>	-	3.0*	21*	1.5	10	Station _ training St	state - stat
Station Station	States States St	0.5	S- State		States - States	States States State	Station - Station 3	estra Steatra Steatra	Station - Jaine St	start- star
2000	1093		a star star	1 - J	0.9	6.2	Staffar - Staffar 3	aller States States	Station Justice St	state - state
States States	duran duran	R	- X	J. J. Ji	State - State	Statute State State	Station - Station 3	estimate States States	States - States St	Chart Shelfmart Shelf

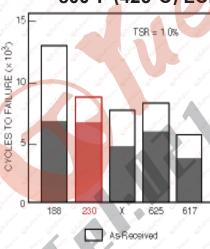
*Significant Extrapolation

		Stealingson Stealingson Ste	Appr	oximate	Initial S	Stress to	Produc	ce Spec	ified Cre	ep in
Tempe	rature	Creep	10 Hours		100 H	lours	1,000	Hours	10,000 Hours	
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
of of o	Start Start Start	0.5	and stand	Straff - Straff - St	35	241	23	159		and state
1200	649	1/	Alatha contain contain	Contraction - contraction of	39	269	26.5	183	17.5	121
	an Star Star martin martin mar	R	75	517	56	386	41	283	29	200
Stern Stern S	and a start and	0.5	35	241	21.5	148	14.5	100	and an area of	Star Star
1300	704	[°] , 1, °	39	269	24.5	169	18	124	12.3*	85*
	are state state	R	59	407	42	290	30	207	21	145
Steel Steel S	ed. Steel Steel	0.5	19	131	13.5	93	10.0	69	State State St	Stall _ Stall
1400	760	J. 1. J	23	159	15.9	110	11.5	79	9.0*	62*
	aller Station Station	K V	37	255	27	186	20	138	14.2	98
Steeling Steeling 3	after States States	0.5	14.0	97 🗸	10.4	72	8.2	57	6.1	42
1500	816	J 1 J	16.5	/ 114 /	12.5	86 🧹	9.5	66	6.9	48
Station Station Station	R	26	179	20	138	14.0	97	9.8	68	
Stationer Stationer S	alland Station Station	0.5	10.3	71	7.6	52	5.6	39 /	4.0	28
1600	871	. <u>1</u>	11.7	81	9.0	62	6.2	43	4.3	30
	Server Start Start	R	20	138	13.7	94	9.5	66	6.2	43
Stationers Stationers	altered statement statement	0.5	7.8	54	5.7	39	3.9	27	2.5	17
1700	927		8.8	61	6.8	47	4.5	31	2.7	19
	Starter Starter	R	15.0	103	10.0	69	6.0	41	3.6	25
C. C. C	States States States	0.5	5.8	40	3.5	24	1.8	12	0.90	6.2
1800	982	1/	6.3	43	4.0	28	2.1	14	1.1	7.6
	en Stern Stern Contra Contra Cont	R	9.4	65	6.0	41	3.2	22	1.7	12
Ster Ster S	and the second second	0.5	4.0	28	2.0	14	0.90	6.2	Stranger Stranger	and and and
1900	1038		4.4	30	2.2	15	1.0	6.9	0.50*	3.4*
Steal Steal 5	State of the state	R	7.0	48	3.7	26	1.8	12	1.0	6.9
Steel Steel of	of State State	0.5	1.9	13	0.80	5.5	0.35	2.4	State State St	Stat Stat
2000	1093	1	2.3	16	1.0	6.9	0.47	3.2	0.20*	1.4*
Stature Stature 5	and share a	R	4.2	29 🗸	2.1	14	1.0	6.9	0.55	3.8
Steller Steller S	atres Shares Shares	0.5	0.80	5.5	0.03*	2.1*	Station - Station 6	stear Strategy Strategy	Status Status St	Stratter Stratt
2100	1149	J. 1	1.0	6.9	0.43	3.0	Station - Station 6	Strate States States	Station Julian St	ar share share
	Strand States States	R	2.3	16	1.2	8.3	0.60	4.1	States States St	and Station Station

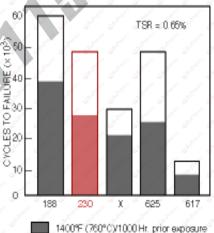

Creep and Rupture Properties Continued

230[®] Plate, Solution Annealed

*Significant Extrapolation


Low Cycle Fatigue

HAYNES[®] 230[®] alloy exhibits excellent low cycle fatigue properties at elevated temperature. Results shown below are for strain-controlled tests run in the temperature range from 800 to 1800°F (425 to 980°C). Samples were machined from plate. Tests were run with fully reversed strain (R= -1) at a frequency of 20 cpm (0.33 Hz).



Comparative Low Cycle Fatigue Properties

The graph below compares the low cycle fatigue lives of a number of alloys tested at 800°F (427°C) in both the as-received and 1400°F (760°C)/1000 hour pre-exposed condition. Samples were machined from plate or bar, after exposure for exposed samples. Tests were again run with fully reversed strain (R= -1) at a frequency of 20 cpm (0.33 Hz). TSR=Total Strain Range.

800°F (425°C) LCF Life for Various Alloys

Compilation of axial LCF test results (R=-1, f=0.33 Hz)

Temperature		Δεtot/%	Ni, Cycles to Initiation	Nf, Cycles to Failure
°F	°C	shafter and a start and a start and a start and		and the set of the set of the
800	427	1.50	2230	2398
Str. Str. Str.	att and rate and	1.00	8480	8742
Ster Ster Ste	Star Star Star	0.80	14,918	16,575
Steam Steam Ste	Staffer Staffer Staffer	َ ^{مَ} 0.65 مَ	45,127	46,523
Station Station Sta	or Shaller Shallon Sale	້ 0.55 ຈັ ຈັ	103,910	/ / 115,456 / /

Indicates a run-out.

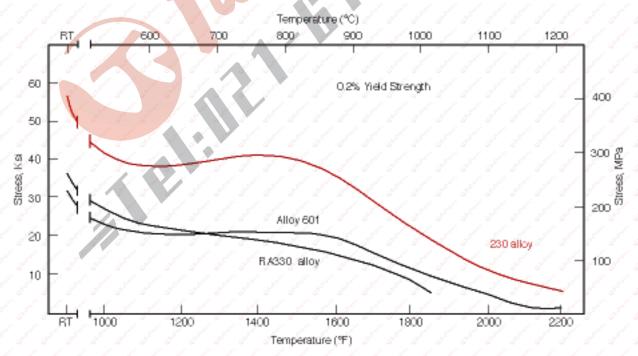
Temperature Δεtot/% Ni, Cycles to Initiation Nf, Cycles to Failure °F °C <u>د</u> -1000 538 1.50 1329 1540 1974 1.25 2368 1.00 3330 4413 0.80 7864 8734 0.70 8423 9876 0.60 40,604 38,696 74,132 0.56 73,014 200,005* 0.53 -4 0.50 201,190* -77 1200 649 1.25 1022 1257 2254 1.00 1852 0.80 3431 4248 0.60 8962 11,058 0.50 82,275 85,563 14 0.45 200,002* 0.40 200,005* 1400 760 0.80 1896 2218 0.40 20,519 21,564 0.40 43,915 45,279 0.30 203,327* ---1400 870 760 1.00 1097 827 1.00 990 0.70 3166 3622 0.50 8153 8490 0.40 51,285 57,819 0.40 68,451 75,470 95,165 96,844 0.38 0.37 91,879 97,612 0.35 202,920* _ 0.30 150,000* ---1600 871 0.70 1279 1504 0.50 3939 4299 0.50 3176 3473 0.40 9712 10,837 0.40 10,781 9296 0.35 19,179 20,964 0.31 61,898 63,253 0.30 66,926 65,691 0.25 200,770* 17 1800 982 0.60 818 1218 0.50 1506 2582 4223 0.40 3520 0.40 3070 4784 0.30 19,810 21,311 19,200 0.30 13,904 0.25 105,140 106,020 0.25 116,960 119,890

Low Cycle Fatigue Continued

Compilation of axial LCF test results (R=-1, f=0.33 Hz)

Tensile Properties

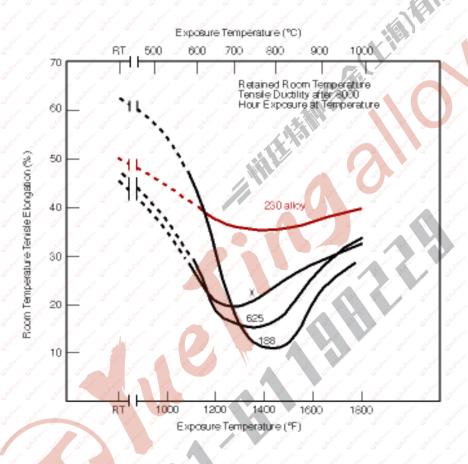
	est erature		Yield ngth	Ultimate Tensile Strength		Elongation
°F /	°C	ksi	MPa	ksi	MPa	%
70	21	60.4	417	121.4	837	47.3
1000	538	42.6	294	100.1	690	51.7
1200	649	42.2	291	96.6	666	56.9
1400	760	45.1	311	78.0	538	59.5
1600	871	34.2	236	44.6	308	74.2
1800	982	17.8	123	24.5	169	54.1
2000	1093	10.0	69	13.1	90	37.0


Tensile Properties of 230[®] Sheet

Tensile Properties of 230[®] Plate

	est erature		Yield ngth	Ultimate Tensile Strength		Elongation
/ °F /	°C /	ksi	MPa	ksi	MPa	%
/ 70 /	21	55.5	383	123.6	852	46.0
1000	538	38.1	263	102.5	706	53.2
1200	649	38.7	267	98.2	677	53.0
1400	760	37.7	260	77.2	533	68.0
1600	871	33.9	234	45.1	311	94.0
1800	982	16.8	116	24.3	168	91.2
2000	1093	9.1	63	13.2	91	92.1

RT= Room Temperature


Comparison of Yield Strengths (Plate)

Thermal Stability

HAYNES[®] 230[®] alloy exhibits excellent retained ductility after long-term thermal exposure at intermediate temperatures. It does not exhibit sigma phase, mu phase, or other deleterious phase formation even after 16,000 hours of exposure at temperatures from 1200 to 1600°F (649 to 871°C). Principal phases precipitated from solid solution are all carbides.

This contrasts markedly with many other solid-solution-strengthened superalloys such as HAYNES[®] 188 alloy, HAYNES[®] 625 alloy, and HASTELLOY[®] X alloy. These alloys all precipitate deleterious phases, which impair both tensile ductility and impact strength.

Thermal Stability Continued

Condition	0.2% Yield Strength	Ultimate Tensile Strength	Elongation	R.A.	Impact Strength
and a second and a second at	ksi	ksi	%	%	ft-lb
MA	123.1	58.4	50	47.2	54
+1200/8,000 hr.	128.0	57.9	36.4	39	31.4
+1200/20,000 hr.	128.4	57.6	34.8	37	28.9
+1200/30,000 hr.	129.9	59.4	34	38.3	Str. Str. Str. C
+1200/50,000 hr.	131.7	61.2	33.9	36.9	25.8
and and and and and and	Carrier	and and and an and an an an		3" 3" 3"	an Start Start Start (
+1400/8,000 hr	129.7	59.2	32	34.3	18.7
+1400/20,000 hr	126.9	55	31.2	31.6	18.8
+1400/30,000 hr	126.9	54.3	31.3	33.9	States States States
+1400/50,000 hr	127.7	55.2	32.2	32.5	20.7
States States States States States States	Stration Stration Station Station	5 5 5 5 5		Station Station St	aller Station Station Station
+ 1600/8,000 hr.	122.7 🧹	54.3	36.2	34.6	21.6
+ 1600/20,000 hr.	/ 121.6 /	50.1	34.4	31.1	19.5
+ 1600/30,000 hr.	120.0	49.6	32.1	28.6	States States States States
+ 1600/50,000 hr.	116.7	50.4	25.2*	20.2	14.8

Room-Temperature Properties after Thermal Exposure

*BIGM; AGL Elong, which tends to be lower; Other data are 4D Elong. R.A.= Reduction of Area

Retained Room Temperature Tensile Ductility after 8000 Hour Exposure at Temperature

Exposure	Room Temperature Tensile Elongation	Room Temperature Tensile Elongation	Room Temperature Tensile Elongation	Room Temperature Tensile Elongation
Temperature	230®	188	625	X
°F	%	%	%	%
1200	36.4	29.1	18	19
1400	32	10.8	13	19
1600	36.2	22.2	a 26 a a	30

Resistance to Grain Growth

HAYNES[®] 230[®] alloy exhibits excellent resistance to grain growth at high temperatures. As a consequence of its very stable primary carbides, 230 alloy can be exposed at temperatures as high as 2200°F (1204°C) for up to 24 hours without exhibiting significant grain growth. Materials such as HAYNES 188 alloy or HASTELLOY[®] X alloy exhibit greater grain growth under such conditions, as would most iron-, nickel-, or cobalt-base alloys and stainless steels.

Exposure	Grain	Size for Alloys		Temperature in Size No.)	for Various	Times*
Time		2150°F(1177°C		22	200°F (1204°C	Č)/ / /
and an hard and		30 [®]	and the second second second second	88		X / / / /
0	4-4 1/2	4 - 4 1/2	4 - 5	4 - 5	3 1/2	3 1/2
^{or} , ^{or} , 1 ^{or} , ^{or} ,	4 - 5	4 - 4 1/2	2 - 5	2.4	3 1/2	0-1
a 4 a a a	4 - 4 1/2	4 - 4 1/2	3 1/2	3	3 1/2	0-1
24	3 ⁵⁶ 3 ⁵⁶ 4 3 ⁵⁶ 3 ⁵⁶	4 - 4 1/2	0-2	1 - 3	00-4	0-1 1/2

*Plate Product

Physical Properties

Physical Property	Brit	ish Units 🧹 🧹	Metr	ric Units
Density	🖉 🖉 RT 🖉 🖉	0.324 lb/in ³	🖉 🖉 RT 🏑 🧹	8.97 g/cm ³
Melting Temperature	2375-2500°F	State State State - State State State	1301-1371°C	States States States States States
States States States States States States States	RT /	49.2 µohm-in	RT°C	125.0 µohm-m
	200°F	49.5 µohm-in	100°C	125.8 µohm-m
	400°F	49.8 µohm-in	200°C	126.5 µohm-m
	600°F	50.2 µohm-in	300°C	127.3 µohm-m
	800°F	50.7 µohm-in	400°C	128.4 µohm-m
Electrical Resistivity	1000°F	51.5 µohm-in	500°C	130.2 µohm-m
	1200°F	51.6 µohm-in	600°C	131.2 µohm-m
	1400°F	51.1 µohm-in	700°C	130.7 µohm-m
	1600°F	50.3 µohm-in	800°C	129.1 µohm-m
	1800°F	49.3 µohm-in	900°C	127.1 µohm-m
			1000°C	125.0 µohm-m
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	RT	3.8 x 10 ⁻³ in ² /sec	RT	24.2 x 10 ⁻³ cm ² /s
	200°F	4.1 x 10 ⁻³ in ² /sec	100°C	26.8 x 10 ⁻³ cm ² /s
	400°F	4.7 x 10 ⁻³ in ² /sec	200°C	29.9 x 10 ⁻³ cm ² /s
	600°F	5.2 x 10 ⁻³ in ² /sec	300°C	32.9 x 10 ⁻³ cm ² /s
	800°F	5.6 x 10 ⁻³ in ² /sec	400°C	35.7 x 10 ⁻³ cm ² /
Thermal Diffusivity	1000°F	6.1 x 10 ⁻³ in ² /sec	500°C	38.5 x 10 ⁻³ cm ² /
	1200°F	6.5 x 10 ⁻³ in ² /sec	600°C	41.9 x 10 ⁻³ cm ² /
	1400°F	6.7 x 10 ⁻³ in ² /sec	700°C	43.0 x 10 ⁻³ cm ² /
	1600°F	6.7 x 10 ⁻³ in ² /sec	800°C	43.2 x 10 ⁻³ cm ² /s
	1800°F	7.3 x 10 ⁻³ in ² /sec	900°C	44.4 x 10 ⁻³ cm ² /s
and a second and a second and a second a second a second a second a	and and the second second		1000°C	48.2 x 10 ⁻³ cm ² /s
and and a start and a start of a	RT	62 Btu-in/ft ² -hr-°F	RT	8.9 W/m-°C
	200°F	71 Btu-in/ft ² -hr-°F	100°C	10.4 W/m-°C
	400°F	87 Btu-in/ft ² -hr-°F	200°C	12.4 W/m-°C
	600°F	102 Btu-in/ft ² -hr-°F	300°C	14.4 W/m-°C
Thermost	800°F	118 Btu-in/ft ² -hr-°F	400°C	16.4 W/m-°C
Thermal Conductivity	1000°F	133 Btu-in/ft ² -hr-°F	500°C	18.4 W/m-°C
Conductivity	1200°F	148 Btu-in/ft ² -hr-°F	600°C	20.4 W/m-°C
d d d d d d d d.	1400°F	164 Btu-in/ft ² -hr-°F	700°C	22.4 W/m-°C
Stand Stand Stand Stand Stand	1600°F	179 Btu-in/ft ² -hr-°F	800°C	24.4 W/m-°C
and and and and and and and	1800°F	195 Btu-in/ft ² -hr-°F	900°C	26.4 W/m-°C
and and and and and and a set	anter State State State	State State State - State State State	1000°C	28.4 W/m-°C

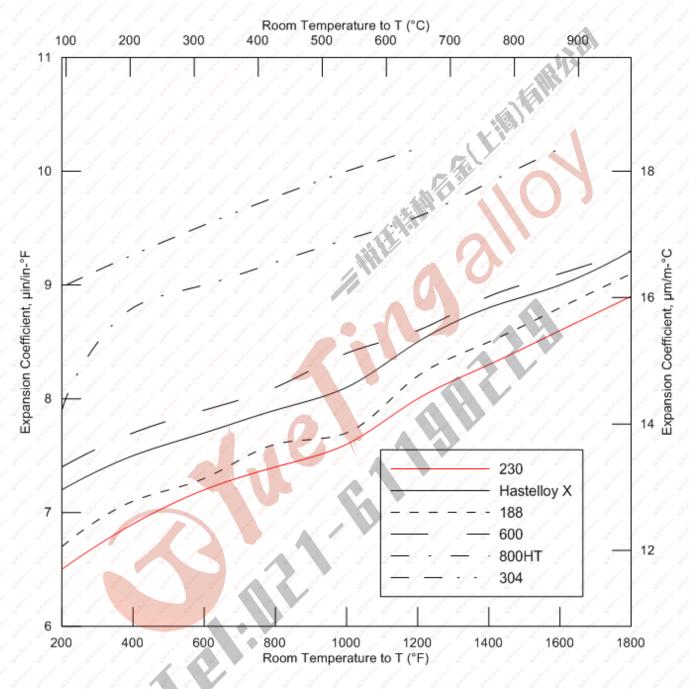
RT= Room Temperature

Physical Properties Continued

Physical Property	🖉 🧹 Briti	sh Units	l 🖉 🖉 🖉 Me	tric Units 🧹 🧹
Search Search States States States States States	/ / RT /	0.095 Btu/lb-°F	🖌 🖉 RT 🖉 🖉	397 J/kg·°C ∕
Salar Salar Salar Salar Salar Salar Salar	200°F	0.099 Btu/lb-°F	100°C	419 J/kg·°C ∕
Statement Statement Statement Statement Statement	∕ 400°F∕	0.104 Btu/lb-°F	200°C//	435 J/kg·°C ∕
Start Start Start Start Start Start Start	600°F	0.108 Btu/lb-°F	300°C	448 J/kg·°C
and and and and and and and and	800°F	0.112 Btu/lb-°F	400°C	465 J/kg·°C
Specific Heat	1000°F	0.112 Btu/lb-°F	500°C	473 J/kg·°C
and a start and a start and a start and a start and	1200°F	0.134 Btu/lb-°F	600°C	486 J/kg·°C
a a a a a a a a a a a a a a a a a a a	1400°F	0.140 Btu/lb-°F	700°C	574 J/kg·°C
and a start and a start and a start and	1600°F	0.145 Btu/lb-°F	800°C	5595 J/kg·°C
St. St. St. St. St. St. St. St. St.	1800°F	0.147 Btu/lb-°F	900°C	609 J/kg·°C
and and and and and and and	St St St St St	and the second	1000°C	617 J/kg·°C
Stand Stand Stand Stand Stand Stand	70-200°F	6.5 µin/in -°F	25-100°C	11.8 x 10-6m/m·°C
	70-400°F	6.9 µin/in -°F	25-200°C	12.4 x 10-6m/m·°C
	70-600°F	7.2 µin/in -°F	25-300°C	12.8 x 10-6m/m·°C
Start Start Start Start Start Start	70-800°F	7.4 µin/in -°F	25-400°C	13.2 x 10-6m/m·°C
Mean Coefficient of	70-1000°F	7.6 µin/in -°F	25-500°C	13.6 x 10-6m/m·°C
Thermal Expansion	70-1200°F	8.0 µin/in -°F	25-600°C	14.1 x 10-6m/m·°C
Start Start Start Start Start Start Start	70-1400°F	8.3 µin/in -°F	25-700°C	14.7 x 10-6m/m·°C
Stand Stand Stand Stand Stand Stand	70-1600°F	<mark>8.6</mark> μin/in -°F	25-800°C	15.2 x 10-6m/m·°C
State State State State State State	70-1800°F	8.9 µin/in -°F	25-900°C	15.7 x 10-6m/m·°C
States States States States States	Station Station Station	and she and - she she she	25-1000°C 🧹	16.1 x 10-6m/m·°C
States States States States States States States	RT	30.3 x 10 ⁶ psi	RT 🧹 🗸	209 GPa
and and and and and and and	200°F	30.1 x 10 ⁶ psi	100°C	207 GPa
and and and and and and and and	400°F	29.0 x 10 ⁶ psi	200°C	200 GPa
stand stand stand stand stand stand	600°F	27.8 x 10 ⁶ psi	300°C	193 GPa
	800°F	26.8 x 10 ⁶ psi	400°C	186 GPa
Dynamic Modulus	1000°F	25.9 x 10 ⁶ psi	500°C	181 GPa
of Elasticity	1200°F	24.9 x 10 ⁶ psi	600°C	175 GPa
	1400°F	23.6 x 10 ⁶ psi	700°C	168 GPa
	1600°F	22.2 x 10 ⁶ psi	800°C	159 Gpa
Star Star Star Star Star Star Star water water and start with start	1800°F	20.7 x 10 ⁶ psi	900°C	150 Gpa
ST ST ST ST ST ST ST ST	2000°F	19.1 x 10 ⁶ psi	1000°C	141 Gpa

RT= Room Temperature

Physical Properties Continued


Physical Property	Seriti:	sh Units	Metric	units 🧹 🧹
search Station Station Station Station Station	/ / RT / /	11.5 x 10 ⁶ psi	RT	🖌 79 Gpa
later of a start of the other of the other of the other	200°F	11.4 x 10 ⁶ psi	100°C	79 Gpa
and and share and share and share and share and share and	400°F	11.0 x 10 ⁶ psi	200°C	76 Gpa
And Share Share Share Share Share Share Sh	600°F	10.5 x 10 ⁶ psi	300°C	73 Gpa
	800°F	10.1 x 10 ⁶ psi	400°C	70 Gpa
Dynamic Shear – Modulus –	1000°F	9.7 x 10 ⁶ psi	500°C	67 Gpa
Widdulus	1200°F	9.3 x 10 ⁶ psi	600°C	64 Gpa
Start strate strate strate strate st	1400°F	8.8 x 10 ⁶ psi	700°C	61 Gpa
Sand Start Start Sand Start Start	1600°F	8.2 x 10 ⁶ psi	800°C	57 Gpa
and and and and and and and	1800°F	7.6 x 10 ⁶ psi	900°C	52 Gpa
n de	2000°F	7.0 x 10 ⁶ psi	1000°C	48 Gpa
and and and and and and and and	RT	0.31	RT	0.31
an star star star star star star star	200°F	0.31	100°C	0.31
and share share share share share sh	400°F	0.32	200°C	0.32
atter state state state state state	600°F	0.32	300°C	0.32
Delesente Detic	800°F	0.33	400°C	0.33
Poisson's Ratio	1000°F	0.33	500°C	0.33
and Stand Stand Stand Stand Stand Stand	1200°F	0.34	600°C	0.34
and survey survey survey survey survey of	1400°F	0.34	700°C	0.34
And Share Share Share Share Share Share Share	/ 1600°F	0.35	800°C	0.34
and share share share a share share share a	1800°F	0.36	900°C	0.35

RT= Room Temperature

Physical Properties Continued

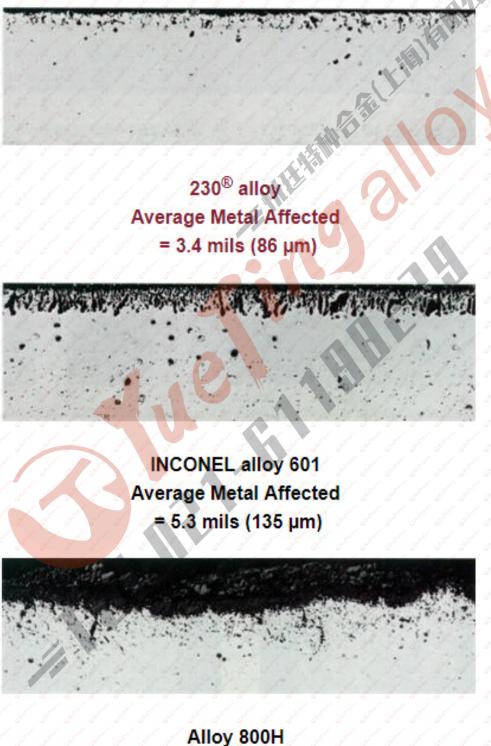
Thermal Expansion Characteristics

HAYNES[®] 230[®] alloy has relatively low thermal expansion characteristics compared to most highstrength superalloys, iron-nickel-chromium alloys, and austenitic stainless steels. This means lower thermal stresses in service for complex component fabrications, as well as tighter control over critical part dimensions and clearances.

Oxidation Resistance

HAYNES® 230® alloy exhibits excellent resistance to both air and combustion gas oxidizing environments, and can be used for long-term continuous exposure at temperatures up to 2100°F (1150°C). For exposures of short duration, 230 alloy can be used at higher temperatures.

Schematic Representation of Metallographic Technique used for Evaluating **Oxidation Tests**


- 1. Metal Loss = (A B)/2
- 2. Average Internal Penetration = C
- 3. Maximum Internal Penetration = D Average Metal Affected = ((A – B)/2) + C
- Maximum Metal Affected = ((A B)/2) + D

	160	410	70°C), 20 iin cycles	2.0	18	1800°F (980°C), 1000 h, 30-min cycles					090°C), 5 in cycles		2100°F (1150°C), 200 h, 30-min cycles			
Alloy	Me Lo		Averag Affe		Me Lo		Average Affe		Me Lo		Average Affec		Me Lo	tal ss		e Metal cted
	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
188	1.1	28	2.9	74	³⁷ 1,1 ³⁷	28	3.2	81	10.9	277	13.1	333	8	203	9.7	246
230 [®]	0.9	23	3.9	99	2.8	71	5.6	142	7.1	180	9.9	251	6.4	163	13.1	333
617	2	51	7.8	198	2.4	61	5.7	145	13.3	338	20.9	531	13.8	351	15.3	389
625	1.2	30	2.2	56	3.7	94	6	152	atran - wither	and the second	Consu	imed	satisfied and	and - trained	the strate -	State - Sta
556®	1.5	38	3.9	99	4.1	104	6.7	170	9.9	251	12.1	307	11.5	292	14	356
X	1.7	43	5.3	135	4.3	109	7.3	185	11.6	295	14	356	13.9	353	15.9	404
HR-120®	State - Stat	3ter	State -State	State - State	6.3	160	8.3	211	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	A	free - the G	-tut	Stall - Stal	- Zeell	State - State	311 - 311
RA330	2.5	64	5	127	8.7	221	10.5	267	15.4	391	17.9	455	11.5	292	13	330
HR-160®	Testinantes - Activ	and statement	talease - talease	testing - testing	5.4	137	11.9	302	12.5	and the first of	18.1	460	8.7	221	15.5	394
310SS	6	152	7.9	201	16	406	18.3	465		Trans	start - start	senter - senter	10 ⁻¹		Cons	umed
800H	3.9	99	9.4	239	22.9	582	Through ne	n Thick- ss	alter - States	Contraction of the second	Consu after 3		or or or or	Start - Startage	Cons	umed

Burner rig oxidation tests were conducted by exposing samples of 3/8" x 2.5" x thickness (9mm x 64 mm x thickness), in a rotating holder to the products of combustion of 2 parts No. 1 and 1 part No. 2 fuel burned at a ratio of air to fuel of about 50:1. Gas velocity was about 0.3 mach. Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

Oxidation Resistance Continued

Comparative Oxidation in Flowing Air 2100°F (1150°C) for 1008 Hours Microstructures shown are for coupons exposed for 1008 hours at 2100°F (1150°C) in air flowing 7.0 feet/minute (2.1 m/minute) past the samples. Samples were descaled by cathodically charging the coupons while they were immersed in a molten salt solution. The black area shown at the top of each picture represents actual metal loss due to oxidation. The data clearly show HAYNES 230 alloy to be superior to both INCONEL alloy 601 and alloy 800H, as well as the other heat-resistant materials listed in the table above.

Alloy 800H Average Metal Affected = 8.9 mils (226 µm)

Haynes International - HAYNES[®] 230[®] alloy

Oxidation Resistance Continued

		ours @ 1 /eek in a	(and 1997)	5	100 March 1	hours @ week in				nths @ 14 week in a		
	and the second	etal ss	10 IN	je Metal ected	de la contra	etal oss	15 JA	ge Metal ected	Me	etal oss	10 M	age Metal fected
Alloy	mils per side	mm per side	mils per side	mm per side	mils per side	mm per side	mils per side	mm per side	mils per side	mm per side	mils per side	mm per side
230 [®]	0.07	0.002	0.53	0.013	0.03	0.001	0.21	0.005	0.05	0.001	0.35	0.009
625	0.11	0.003	0.5	0.013	0.04	0.001	0.27	0.007		-	Senter -	Search Search Sea
X	0.03	0.001	0.5	0.013	0.04	0.001	0.3	0.008	<u> </u>	- / -	<u> </u>	
253MA	0.66	0.017	1.59	0.04	0.08	0.002	0.68	0.017	S (2)	3"	<u></u>	Ster _ Ster
800HT	States - Justin	treft and a	and states st	State State	Stell"- Stell	State - State	States - States	States - States	0.12	0.003	0.82	0.021
347SS	0.86	0.022	1.48	0.038	0.18	0.005	0.18	0.005	0.46	0.012	1.26	0.032

Water Vapor Testing

Amount of metal affected for high-temperature sheet (0.060 - 0.125") alloys exposed for 360 days (8,640 h) in flowing air.

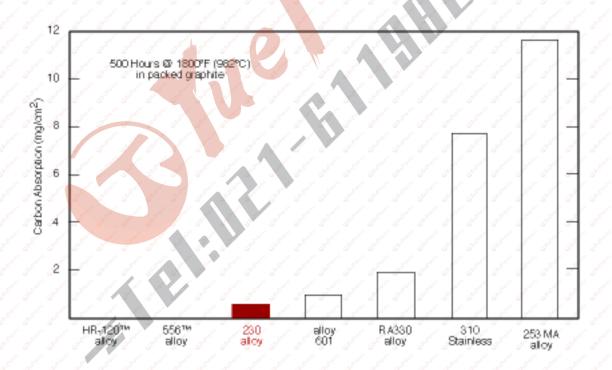
	testing Steeling	State 1	600°F		Sheller St	×** _*1	800°F	States a	Star Star	2	000°F	310 3	athe Shelles	🧹 21	00°F	
	N 28	etal ss*	Average Metal Affected		Metal Average Metal Loss* Affected		Metal Loss*		Average Metal Affected		Metal Loss*		Average Metal Affected			
Alloy	mils	μm	mils	μm	mils	μm	mils	µm 🧹	mils	μm	mils	μm	mils	ί μm	mils	μm
625	0.3	8	1.4	36	Stratter St	Stear - Steafing	States Stat	Jr J	-	Stall - Stal	Column of		Star Gladian	Steeles - Steel	Share Sh	or states
230®	0.2	5	1.4	36	0.1	3	2.5	64	3.4	86	11	279	28.5	724	34.4	874
617	0.3	8	1.6	41		unt - un			- 1	and a	<u></u>	-	carr - carr	and a		an - an
HR-120 [®]	0.3	8	1.6	41	0.5	13	3.3	84	18.1	460	23.2	589	33.6	853	44	1118
25	0.3	8	1.7	of 43	Strat - St	-Sher	3" - 3 ⁶	St- Str	Chelin	ater - Vi		<u>े अभ</u> ि ड	-treft	Streft - Streft	Stratt St	Ster.
188	0.2	5	1.8	46	atter at	Search - Shafes	ater ater	States State				ener sandrar si	Start - Chains	States - State	and the state of the	and alternation
556®	0.3	8	1.9	48	0.5	13	6.2	157	15	381	24.1	612	State - State	Starten and	and and and	and salar
X	0.3	8	2.2	56	0.2	5	2.8	71	17.1	434	26.2	665	51.5	1308	55.4	1407
800HT	0.4	10	2.9	74	3 ⁴⁷ _ 3	-30	State State	State A	-	Ster _ Ste	Strange Str	<u></u>	a star	Ster _ Ster	State St	Star
HR-160®	tertion - Steele	3 Keller	Station - Station	30 - 30 C	1.7	43	13.7	348	7.2	183	30.8	782	12	305	45.6	1158

Metal loss was calculated from final and initial metal thicknesses; i.e. ML = (OMT – FMT) /2

Static Oxidation Comparison

Insurant Stationers Ste	Charles Strategies	aller the set	Street Aller	C	ompara	ative (Oxidation	Resista	ance ir	n Flow	/ing Air, [·]	1008 Ho	u rs *	Shelingan	halfragen alkalfragen a	felling the finger
	Sand A Traine	1800	°F (982°0	C)	al set	2000°	F (1093°C	C)	Stratest after	2100°	°F (1149°	C)	2200°F (1204°C)			
	C 5. 500	etal ss	100	e Metal cted	10 NO	etal ss	Average Affe		These these	tal ss	40° - 60°	e Metal cted	Me Lo		100 KB1	e Metal
Alloy	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
230®	0.2	5	1.5	38	0.5	13	3.3	84	1.2	30	4.4	112	4.7	119	8.3	211
188	0.1	3	1.1	28	0.5	13	3.7	94	8.6	218	10.7	272	5.2	132	48.2	1224
601	0.4	10	1.7	43	1.3	33	3.8	97	2.8	71	6.5	165	4.4	112	7.5	191
617 🧹	0.3	8 🕹	2	51 🗸	0.6	J15	3.8	97	1	25	5.2	132	10.7	272	12.6	320
X	0.2	5	1.5	38	1.3	33	4.4	112	3.6	91	6.1	115	Teatron - Steaters	States -	Star Star S	Strate State
800HT	0.5	13	4.1	104	7.6	193	11.6	295	12.4	315	15	381		and south	States atraces	Star -
446 SS	and - call		and taken	and the second	13	330	14.4	366	and - and	-	>21.5	>546			and the second	and the second
316 SS	12.3	312	14.2	361	<u> </u>	<u>ತ್_</u> ತ	>17.5	>445		S ^r	>17.5	>445	<u>-</u> 31	S ¹¹ - 3	<u> </u>	<u> </u>

*Metal Loss + Average Internal Penetration


Nitriding Resistance

HAYNES[®] 230[®] alloy is one of the most nitriding resistant materials commercially available. Tests were performed in flowing ammonia at 1200°F (650°C) and 1800°F (980°C) for 168 hours. Nitrogen absorption was determined by chemical analysis of samples before and after exposure and knowledge of the exposed specimen area.

	of of of of of of of Nitro	ogen Absorption (mg/o	cm²)
Alloy	1200°F (649°C)	1800°F (982°C)	2000°F (1093°C)
230 [®]	of of of 0.7 of of of	3° 3° 3° 1.4 3° 3° 3°	1.5
600 🖉 🏑	/ / / 0.8 / / /	6 6 6 0.9 6 6 6	0.3
625	0.8	2.5	3.3
X / X / /	1.7	3.2	3.8
RA330®	5 5 5 5 5 5 5 5 5	3.9	3.1
800H	4.3	4.0	5.5
316 SS	6.9	6.0	3.3
310 SS	7.4	7.7	9.5
304 SS	9.8	7.3	3.5

Carburization Resistance

HAYNES[®] 230[®] alloy exhibits good resistance to carburization when compared with many other industrial alloys. Test results were generated for 500 hours exposure in packed graphite at 1800°F (980°C). Carbon absorption was determined by chemical analysis of samples before and after exposure and knowledge of the exposed specimen area.

Hydrogen Embrittlement

Notched tensile tests performed in hydrogen and air reveal that 230® alloy is resistant to hydrogen embrittlement. Tests were performed in MIL-P-27201B grade hydrogen, with a crosshead speed of 0.005 in/min (0.13 mm/min). Specimens were notched with a KT value of 8.0.

Chefred		est erature		rogen ssure	Ratio of Notched Tensile Strength, Hydrogen/Air
Gleria	°F ,	°C	psig	MPa	
Stell	70	21	3000	21	0.92
Strating	√70 ^ر	21	5000	34	1,07

Aqueous Corrosion Resistance

Coupons were exposed for four 24-hour periods in various acids at the stated temperatures, and general corrosion rates were calculated from weight change measurements.

Alloy	and the second second second second second	Corrosion Rate (mils per year)								
St St St St St St St St	10% HNO ₃ Boiling	10% H ₂ SO ₄ 150°F (66°C)	10% HCI 150°F (66°C)							
230 [®]	0.3	0.6	112							
625	, ^a , ^a , ^a 0.7	0.4	65 65							
600 🗸 🗸	0.8	41.8	366							
🖌 🗸 316 SS 🖌 🗸	States States States 1 States States States	17.8	3408							
and and and and and and	Station Station Station Station	<0.1	99 / / /							

Hardness and Grain Size

Solution Annealed Room Temperature Hardness

Form	Hardness, HRB	Typical ASTM Grain Size
Sheet	92	4 - 6.5
Plate	92	3 - 5
Bar	90	3 - 5

HRB = Hardness Rockwell "B"

Applications

Nitric acid catalyst grids support made from HAYNES[®] 230[®] alloy plate and bar. Excellent creep strength at 1700°F (927°C) makes the alloy highly suitable for this application.

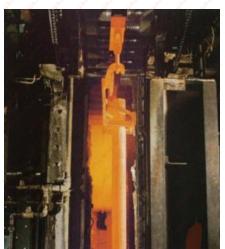
Prototype 230[®] combustor for Dresser-Rand DR-990 industrial turbine.

Prototype 230[®] high-temperature expansion bellows made of 0.020-inch (0.5mm) thick sheet in a catalytic cracker configuration.

Textron Lycoming gas turbine engine combustor made of HAYNES[®] 230[®] alloy.

Resistance-heated 230[®] superheater tubes at the Penn State Applied Research Laboratory. Used to produce about 1625°F (885°C) high-pressure steam.

This horizontal electrically fired 230[®] retort replaced an alloy 600 retort which lasted only an average of eight months in 1400 to 2200°F (760 to 1205°C) service in hydrogen atmosphere. The 230 retort was still in excellent condition after 24 months service, as shown.


Applications Continued

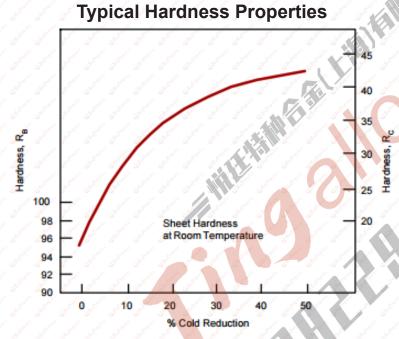
Fabricated heat-treating basket for vacuum furnace application to 2300°F (1260°C). Made from 1/2-inch (12.7 mm) diameter 230[®] bar.

Wire annealing fixture of 230 alloy reduces thermal mass and cycle times after replacing massive carbon-steel "stub" used previously.

HAYNES[®] 230[®] damper atop this glass melting furnace withstands 2300°F (1260°C) for short times and 2000°F (1095°C) for sustained periods.

This striking shot of a HAYNES 230 heat-treat fixture was taken at a leading off-road automotive equipment plant. This conveyor fixture operates at 1550°F (845°C) with a subsequent water quench followed by a four hour cycle at 1050°F (565°C).

Cast heat-treat basket of 230 alloy in use at Alloy Foundries, Division of the Eastern Company, Naugatuck, Connecticut. Substrate holder and box of 230 alloy resist temperatures of 1650°F (900°C) during the production of semiconductors.



230 retorts operate at 2100°F (1150°C) with a hydrogen atmosphere (inside) and combustion products outside.

Fabrication

Heat Treatment

HAYNES[®] 230[®] alloy is normally final solution heat-treated at 2250°F (1230°C) for a time commensurate with section thickness. Solution heat-treating can be performed at temperatures as low as about 2125°F (1165°C), but resulting material properties will be altered accordingly. Annealing during fabrication can be performed at even lower temperatures, but a final, subsequent solution heat treatment is needed to produce optimum properties and structure. Please refer to following sections and publication click here for additional information.

Effect of Cold Reduction Upon Room-Temperature Tensile Properties*

Cold Reduction	Subsequent Anneal Temperature	0.2% Stre	Yield ngth	Ultimate Stre	Elongation	
%		ksi	MPa	ksi	MPa	%
0 0		61.8	425	128.2	885	46.6
10	and the second	104	715	144.5	995	31.8
20	None	133.4	920	163.9	1130	16.8
30		160.1	1105	187.5	1295	9.7
40		172.4	1190	201.5	1390	7.5
/ 50 / ,	a set of a set of a	184.6	1275	214.6	1480	6 / 6
10		91.9	635	143.5	990	32.9
20		80.8	555	141.9	980	35.6
30	1950°F (1066°C)	75.9	525	142.1	980	35.7
40		81.2	560	145.5	1005	32.3
50		86.1	595	147.7	1020	34.6

*Based upon rolling reductions taken upon 0.120-inch (3.0 mm) thick sheet. Duplicate tests.

Fabrication Continued

Cold Reduction	Subsequent Anneal Temperature	0.2% Stre		Ultimate Strei	Elongation	
10	and a start when a start when a start when a start	80.8	555	139	960	36.5
20	a a a a a a a a a a a a a a a a a a a	65.4	450	135.7	935	39.2
30	2050°F (1121°C)	72	495	140	965	37.6
40	and a set of the set of	76.1	525	142.3	980	35.5
50	Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand	80.8	555	143.9	990	36.3
10	and and and and and and and and	55.5	385	129.5	895	43.7
20		64.4	445	134.3	925	40.1
30	2150°F (1177°C)	70.2	485	138.1	950	38.5
ر 40 ک	and a service a	73.4	505	139.2	960	38.1
50	Sector States States Sector States States States	71.9	495	137.7	950	39.1

*Based upon rolling reductions taken upon 0.120-inch (3.0 mm) thick sheet. Duplicate tests.

Microstructure

(ASTM 5 grain size) Annealed at 2250°F (1230°C)

Etchant 95ml HCl plus 5 gm oxalic acid, 4 volts

Welding

HAYNES[®] 230[®] alloy is readily welded by Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Shielded Metal Arc Welding (SMAW), and resistance welding techniques. Its welding characteristics are similar to those for HASTELLOY[®] X alloy. Submerged Arc Welding (SAW) is not recommended as this process is characterized by high heat input to the base metal and slow cooling of the weld. These factors can increase weld restraint and promote cracking.

Base Metal Preparation

The welding surface and adjacent regions should be thoroughly cleaned with an appropriate solvent prior to any welding operation. All greases, oils, cutting oils, crayon marks, machining solutions, corrosion products, paint, scale, dye penetrant solutions, and other foreign matter should be completely removed. It is preferable, but not necessary, that the alloy be in the solution- annealed condition when welded.

Filler Metal Selection

HAYNES[®] 230-W[®] filler wire (AWS A5.14, ERNiCrWMo-1) is recommended for joining 230[®] alloy by Gas Tungsten Arc or Gas Metal Arc welding. Coated electrodes of 230-W[®] alloy are also available for Shielded Metal Arc welding in non-ASME code construction. For dissimilar metal joining of 230[®] alloy to nickel-, cobalt-, or iron- base materials, 230-W[®] filler wire, HAYNES[®] 556[®] alloy (AWS A5.9 ER3556, AMS 5831), HASTELLOY[®] S alloy (AMS 5838) or HASTELLOY[®] W alloy (AMS 5786, 5787) welding products may all be considered, depending upon the particular case. Please click here or the Haynes Welding SmartGuide for more information.

Preheating, Interpass Temperatures, and Postweld Heat Treatment

Preheat is not required. Preheat is generally specified as room temperature (typical shop conditions). Interpass temperature should be maintained below 200°F (93°C). Auxiliary cooling methods may be used between weld passes, as needed, providing that such methods do not introduce contaminants. Postweld heat treatment is not generally required for 230[®] alloy.

Nominal Welding Parameters

Details for GTAW, GMAW and SMAW welding are given here. Nominal welding parameters are provided as a guide for performing typical operations and are based upon welding conditions used in our laboratories.

Test Ter	nperature	Ultimate Stre	e Tensile ngth	0.2% Yield	Elongation	
star store for star	°C	ksi	MPa	🖌 🖉 ksi 🧹	MPa	6 6 %
RT/ /	RT	123.4	851	64.7	446	32.2
1600	871	61.2	422	36.6	252	36.9

Transverse GTAW Weld on 1/2" Plate

Specifications and Codes

	06231) AMS 5878	
Sheet, Plate & Strip	SB 435/B 435 P= 43	
Billet, Rod & Bar	AMS 5891 SB 572/B 572 B 472 P= 43	
Coated Electrodes	SFA 5.11 (ENiCrWMo-1) A 5.11 (ENiCrWMo-1) F= 43	
Bare Welding Rods & Wire	SFA 5.14 (ERNiCrWMo-1) A 5.14 (ERNiCrWMo-1) AMS 5839 F= 43	
Seamless Pipe & Tube	SB 622/B 622 P= 43	
Welded Pipe & Tube	SB 619/B 619 SB 626/B 626 P= 43	
Fittings	SB 366/B 366 P= 43	
Forgings	AMS 5891 SB 564/B 564 P= 43	
DIN	17744 No. 2.4733 NiCr22W14Mo	
Others		

	Codes			
HAYNES [®] 230 [®] alloy (UNS N06230) HAYNES [®] 230-W [®] alloy				
Station Chainson Chainson	pi di di bi	JNS N06231		
ASME	Section I	1650°F (899°C) ¹ , ⁴		
	Section III	Class 1 Class 2	and and a set a set a set a set a set a s	
		Class 3		
	Section IV	HF-300.2	500°F (132°C) ¹	
	Section VIII	Div. 1	1800°F (982°C) ¹ , ^{5, 6}	
		Div. 2	3 4 3 5 3 4 3 4 - 3 4 3 4 3 4	
	Section XII	650°F (343°C) ¹		
	B16.5	1500°F (816°C) ²		
	B16.34	1500°F (816°C) ^{3.7}		
	B31.1			
	B31.3	1650°F (900°C) ¹		
MMPDS	Antonia Antonia Antonia Antonia A	6.3.9		

1Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube, seamless pipe/tube

2Plate, Forgings

3Plate, Bar, Forgings, seamless pipe/tube

4This is the maximum design temperature for water service construction. Several ASME Code Cases govern additional usage:

a) Per Section I Code Case 2665, 1300°F (704°C) is the maximum design temperature for molten nitrate salt wetted construction.

b) Per Section I Code Case 2756, autogenous welds can be used in the design range of 1000°F and 1250°F (538-677°C).

c) Weld strength reduction factors are governed by Section I PG-26 and Code Case 2805.

5Section VIII Division 1 Code Case 2671 contains an external pressure chart for 1800°F (982°C).

6For any bolts created from this material, 1650°F is the maximum design temperature. See Section VIII Division 1 Code Case 2775. 7B16 Case 5 allows for higher pressure-temperature ratings for valves made of this material.

Disclaimer:

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data in this document but makes no representations or warranties as to the data's accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums. It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc., unless otherwise indicated.